
 Brown 1

“The Unix Philosophy”

Dr. Michael S. Brown
Associate Professor
School of Computing

NERD!

 Brown 2

http://www.youtube.com/watch?v=dFUlAQZB9Ng

One word summary of Unix?

 Brown 3

Simplicity
"UNIX is very simple, it just needs a genius to understand its simplicity.“

Dennis Ritchie (Unix co-creator)

Historical Perspective
•  First generation of computers (1930-1950)

– Only a handful of computers in existance
•  E.g. Zuse Z3, Colossus, Harvard Mark 1, ENIAC

– These computers are glorified calculators
– Run “programs” in batches
– Almost all are “government” sponsored

machines

 Brown 4

Historical Perspective
•  Second gen computers (1950-1960)

–  Commercial Computers
•  IBM, Remington Rand, Burroughs, Honeywell

–  Mainly used for calculation and statistics
–  Very expensive

•  But things are happening

–  Transistors replace vacuum tubes
–  Disk storage, printers being developed
–  High level languages developed

Cobol (Common Business-Oriented Language),
Fortran (Formula Translator)

 Brown 5

Historical Perspective
•  Third Generation (1960-1970)

– More players enter the market
•  Bell Labs, GE, DEC, IBM, HP, Data General,

Commodore
– Uses are going beyond calculations

•  Ivan Sutherland introduces GUI, Graphics
•  Computers are used for Text Editing, type-setting

 Brown 6

History of “Unics”

 Brown 7

Ken Thompson Dennis Ritchie

Engineers at Bell Labs, 1960s

$	
 man	
 “Ken	
 Thompson”	

	
 BS,	
 MS	
 Com-­‐Sci:	
 UC-­‐Berkley	

	
 Employers:	

	
 Bell	
 Labs	

	
 Entrisphere,	
 Inc	

	
 Google	

	

Notes:	
 	

1983	
 Turning	
 Award	

Winner	

	

Developed	
 UTF-­‐8	

encoding	
 scheme.	

	

Created	
 the	
 “B”	
 programming	

Langauge.	

	

	

$	
 man	
 “Dennis	
 Ritchie”	

	
 BS,	
 Physics/Math:	
 Harvard	

	
 Employers:	

	
 Bell	
 Labs	

	
 	

Notes:	
 	

1983	
 Turning	
 Award	

Winner	

	

Created	
 the	
 “C”	
 programming	

Language.	

	

	

The “Fathers” of Unix

Multics
•  Multiplexed Information and Computing Service
•  A time-sharing OS started in 1964
•  Partners: MIT, GE, Bell Labs
•  Multics

–  Was growing too complicated and convoluted
–  Bell exited the project in 1969
–  Ken and Dennis worked on this project
–  Ken and Dennis wanted to make a simpler version

–  While working on Multics, they had already started, working on a “small” PDP-7 and
experimenting with notions of processes, command-line interpreters, hierarchical
file system, and utility programs

 Brown 8
PDP-7

Unix (Unics)
•  Uniplexed Information and Computing Service (Unics)

–  Some people have purported the Unix was originally a play on
Multics, i.e “Unics”

–  Dennis Ritchie states this is a myth, the term was Unix from the
beginning . . however, you do wonder how they go to Unix?

•  Driving idea of Unix
–  Portable

•  OS up to this point were wedded to the computer used
•  They wrote Unix in C, with minimal assembly code

–  Mutli-tasking, multi-user
–  Simple and light-weight OS (Kernel)
–  Use of “flat” plain text-files
–  Hierarchical file system
–  Large number of “software tools” Brown 9

From the men themselves

 Brown 10

http://www.youtube.com/watch?v=7FjX7r5icV8

“Modern” OS features
proposed in Unix

 Brown 11

(1) Processes
(2) Device/Files Unification
(3) Shell (and pipes)
(4) File system

Multics
•  Many of the ideas in Unix, were inspired

by Multics
– Processes
– Hierarchal file system
– “Virtual Memory”

•  The problem with Multics?
– The system was too complicated!

•  Tried to do everything, to be too versatile, too
flexible, and failed

– One of the driving philosophies in Unix was to
“keep is simple”

 Brown 12

Kernel Kernel

Unix Design

 Brown 13

Shell

Kernel

Utilities
(Tools and Apps)

$	
 man	
 “kernel”	

	

Controls	
 the	
 systems.	

Main	
 tasks:	

Process	
 management	

Device	
 communication	

File	
 system	

$	
 man	
 “shell”	

	

User	
 interface	
 to	
 	

communicate	
 with	
 the	
 system.	

Includes	
 a	
 set	
 of	
 basic	

shell-­‐utilities.	
 	
 Facilitates	

scripting.	

$	
 man	
 “utilities”	

	

The	
 largest	
 set	
 of	
 Unix.	

Tools	
 developed	
 to	
 assist	

the	
 user	
 in	
 their	
 tasks,	

e.g.	
 text	
 editor,	
 plotting,	

etc.	
 .	
 	

(1) Process Management
•  Process management
•  Process is an executing program

–  Its code+data
•  Each process has a unique ID (PID)
•  Multiple users can run multiple processes

at once
– Time-sharing, multi-user system

•  Processes have a hierarchy (parent-child)

 Brown 14

Unix Processes
•  Process

components

•  Kernel manages
this information

•  Each process
gets a small time
on the CPU, in a round
robin fashion
(time-sharing)

 Brown 15

Unique ID (PID)
Parents ID (PPID)
Code (instructions)
Machine registers
Global data
Run-time data (stack)
Open files (file descriptors)
Environment variables
Credentials for security

Process Creation

 Brown 16

•  A process can create a new process
•  Creation strategy?

– fork()
•  makes an exact copy of the process that calls

fork()
– exec*()

•  loads a program image to reply current process
code

Fork()

 Brown 17

Parent

pid = fork()

Returns a new
PID: e.g. pid == 5

Data

Shared
Program

Data
Copied

Child

pid == 0

Fork() + Exec()

 Brown 18

New
Copy of
Parent

Initial process

Fork

Original
process

Continues

Returns a
new PID

new_Program
(replacement)

exec(new_program)

fork() returns pid=0 and runs as a cloned parent
until execv is called

Process Hierarchy

 Brown 19

• init – the “mother” process
• getty – login process
 OS kernel

Process 0
(sched)

Process 1
(init)

getty getty getty

login

csh

login

bash

(2) File/Device Unification
•  Another Unix idea was the use of a single (file) interface

for both files, devices, and even process communication
•  Files

–  Can read and write characters or “blocks” of data
•  Devices

–  Character devices (read characters, not “seekable”)
•  /dev/pts10

–  Block devices (read blocks of data, “seekable”)

•  Pseudo Device
–  /dev/zero (produces zeros)
–  /dev/null (ignores all input, has no output)
–  /dev/random (produces a stream of random output)

•  In Unix, files, devices all are interfaced the same
–  This makes it very convenient for writing code

 Brown 20

(3) Unix Shell
•  Command Line interpreter

–  Is just another program
– BUT, it can be used to tie many programs

together
•  Thanks to process creation and hierarchy

–  Parent of all processes in a shell are the shell!

– Also, allows “shell scripting”
•  Sequential execution of shell commands
•  Evolved into full programming language

 Brown 21 It is surprisingly easy to write your own basic shell using fork+exec.
(Even pipes isn’t too hard)

(3) Unix Shell
•  Common Shell Commands
sort Sorts lines in ascending, descending and unique order
grep Searches for regular expressions in strings or files
basename Strips the path from a path string to leave just the filename
dirname Removes the file from a path string to leave just the pathname
cut Chops up a text string by characters or fields
wc Count the characters, words, or lines
[(test)] Predicate or conditional processor
tr 'a' 'b' Transform characters
expr Simple arithmetic processor
bc Basic Calculator
eval Evaluate variables
echo Output strings
date Create date strings
nawk Manipulate text strings
head | tail Access lines in files

•  Flow control
 if, for, while, case, basic math

 Brown 22

Pipes
•  Unix also introduced the notion of “pipes”

cat file.txt | wc –l > output.txt

 Brown 23

Output of process
‘cat’

Because the input
of process ‘wc’

Output of process wc
is input to file output.txt

Pipes was a powerful way to link the stdout of a
program to the stdin of a other.

This is the cornerstone of Unix getting processes
to “work together”.

(4) Unix File System
•  Directory Structure

– Tree-based structure
– Allows “soft” and “hard links”
– Some Unix systems allow graph structure (i.e.

cycles, this can be dangerous)
•  Directory Structure is well known

– Unix systems are standard
– Files kept in standard directories
/usr/bin /sys/bin etc . . .

 Brown 24

Unix File System

 Brown 25

Boot
Block

Super
Block

I-nodes Data Blocks

$	
 man	
 “boot	
 block”	

Boot	
 strap	
 code	
 to	
 get	
 the	

system	
 booted.	

	

	

$	
 man	
 “super	
 block”	

Meta-­‐data	
 about	
 the	
 	

file	
 system,	
 hard	
 drive,	

tuning	
 parameters.	

	

	

$	
 man	
 “inodes”	

Meta-­‐data	
 (permissions),	

and	
 link	
 to	
 data	
 blocks.	

This	
 is	
 the	
 “file”	
 	

	

	

$	
 man	
 “data”	

The	
 actual	
 data!	

	

	

Modern systems allow file sizes
up to 8 Zettabytes

Unix Spreads Quickly
•  1972, Unix ported to C language

–  Now, entire OS is almost all in C, only small amount in assembly
needs to be modified for a new platform

•  Bell (a telephone company) was not allowed to enter the
computing market
–  Ken Thompson started sending copies to anyone how asked, full

distribution 10MB

•  Bell became AT&T, licensed Unix to universities,
commercial firms

•  AT&T releases System 7+ Unix commercially, 1979+
•  Berkeley Software Distribution (BSD) starts its own Unix,

1977

 Brown 26

Linus Torvalds
•  1991, Linux is developed for PCs

 Brown 27

Finnish student working on “Minix”
(a educational only mini-unix by Andrew
Tanenbaum), he decided to write his
 own Unix.

Linux, released under the GNU license.

The rest is History. . .

$	
 man	
 “Linus”	

	

Masters	
 in	
 CS,	
 U.	
 Helsinki	

(Master	
 thesis?	
 LINUX)	

Now,	
 only	
 around	
 2%	
 of	
 existing	
 Linux	
 kernels	
 are	
 from	
 his	
 original	
 code.	

His	
 net	
 worth	
 is	
 $20milion,	
 due	
 to	
 stock	
 options	
 from	
 Red	
 Hat,	
 etc.	
 .	
 	

Now	
 a	
 US	
 citizen.	

The many flavors of Unix

 Brown 28

The Unix Culture
•  Unix created a culture
•  People wanted a better, more efficient,

computing system
•  These people were logical and pragmatic

in their thought (nerds)
•  They laid the foundation for:

“The Unix Philosophy”

 Brown 29

Driving Philosophy

 Brown 30 Douglas McIlroy

$	
 man	
 “McIlory”	

BS	
 Cornell	

PhD	
 MIT	

Bell	
 Labs	
 Career	

Now	
 retired,	
 adjunct	
 faculty	
 at	
 Dartmouth	
 	

	

	

According to Douglas McIlory, part of Unix development team at Bell Labs:

(1) Write programs that do one thing and do it well.

(2) Write programs to work together.

(3) Write programs to handle text streams, because that is a universal interface.

Principals and Practices
•  Rule 1. Bottlenecks occur in surprising places, so don't try to second guess and put in a

speed hack until you've proven that's where the bottleneck is.

•  Rule 2. Measure. Don't tune for speed until you've measured.

•  Rule 3. Fancy algorithms are slow when n is small, and n is usually small. Fancy algorithms
have big constants. Until you know that n is frequently going to be big, don't get fancy. (Even
if n does get big, use Rule 2 first.)

•  Rule 4. Fancy algorithms are buggier than simple ones, and they're much harder to
implement. Use simple algorithms as well as simple data structures.

•  Rule 5. If you've chosen the right data structures and organized things well, the algorithms will
almost always be self-evident. Data structures, not algorithms, are central to
programming.

 Brown 31 Douglas McIlroy

$	
 man	
 “Pike”	

Education	
 cannot	
 be	
 determined	

Bell	
 Labs,	
 Developed	
 early	
 GUI	
 	

terminal	
 for	
 Unix	
 in	
 1982	
 (not	
 X)	

Now	
 at	
 Google	

(Did	
 not	
 receive	
 the	
 1980	
 Olympic	

Medal	
 for	
 Archery)	

Some selective rules

(http://www.faqs.org/docs/artu/ch01s06.html)

 Brown 32

Rule of Modularity

 Brown 33

Write simple parts connected by clean interfaces.

Software can be very complicated, especially for large systems.
Its even hard for the programming to cope with the complexity.

Take a modular approach and build many small, but simple components.

These components work together through simple and clean interfaces.

**Object oriented programming uses this concept too.

Rule of Clarity

 Brown 34

Clarity is better than cleverness.

Write code for humans to read, first!

Rule of Composition

 Brown 35

Design programs to be connected with other programs

THINK PIPE!

Stick with text streams for input and output.

Avoid the use of user input (for example, prompt for “yes”), use command line
flags instead.

To make programs composable, make them independent. A program on one
end of a text stream should care as little as possible about the program on the
other end.

Rule of Simplicity

 Brown 36

Design for simplicity; add complexity only where you must.

The notion of “intricate and beautiful complexities” is almost an oxymoron.
Complexity leads to bugs.

Keep programs as simple as possible. Sometimes less is more.

“Worse” is “better”.

If other processing is required, consider writing another programming and
exploiting composibility . . i.e. piping.

Rule of Transparency

 Brown 37

Design for visibility to make inspection and debugging easier.

Debugging dominates development. Unix is made to have programs work together.
Make it easy to understand how your program works (i.e. make it transparent).

For a program to demonstrate its own correctness, it needs to be using input and
output formats sufficiently simple so that the proper relationship between valid input
and correct output is easy to check.

A good ‘manual page’ with examples also helps!

Rule of Robustness

 Brown 38

Robustness is the child of transparency and simplicity.

Program should work well. Minimize when it fails, and when it does
fail, fail gracefully.

Consider situations, just as accepting empty lists/strings/etc., even in
places where a human would seldom or never supply an empty
string, avoids having to special-case such situations when generating
the input mechanically.

Rule of Lease Surprise

 Brown 39

In interface design, always do the least surprising thing.

The easiest programs to use are those that demand the least new learning
from the user.

Stick with convention (+ means add).

Consider your audience.
 Program used by sys administrators may have different common practices

 than a program used by programmers.

Avoid excessive features, novelty.

Rule of Silence

 Brown 40

When a program has nothing surprising to say,
it should say nothing.

I think that the terseness of Unix programs is a central feature of the style.
When your program's output becomes another's input, it should be easy to
pick out the needed bits. And for people it is a human-factors necessity —
important information should not be mixed in with verbosity about internal
program behavior. If all displayed information is important, important
information is easy to find.

-- Ken Arnold

Ken Arnold

$	
 man	
 “McIlory”	

BS	
 Berkeley	

Contributor	
 to	
 the	

original	
 BSD	
 Unix	

distribution.	
 	
 	

	

Also	
 wrote	
 the	
 game	
 “rouge”.	

Rule of Repair

 Brown 41

Repair what you can — but when you must fail, fail
noisily and as soon as possible.

Basically, if it is something minor, fix it (or consider handling it), but if you
“fail” then make sure you cause a detectable failure to the other programs.

Also, if possible, make it clear why it failed.

Rule of Optimization

 Brown 42

Prototype before polishing. Get it working before you optimize it.

“90% of the functionality delivered now is better than 100% of it delivered never!”
 - Kernighan & Plauger
 (Kernighan is co-author of the C Programming Book)

“Premature optimization is the root of all evil”

 – Donald Knuth (Computing “Grandfather”)

Brian Kernighan Don Knuth

Unix Influence
•  Apple OS

– Built on BSD
•  Chrome/OS

– Google has hired many of the Unix people
•  Unix inspirations

– Xinu (Xinu Is Not Unix)
Extremely light-weight OS for embedded systems

 Brown 43

Unix Usage Today

 Brown 44

•  Hollywood (Lucas Film, ILM)
– Processing ray-tracing renderings
– Scripting

•  Bank Industry
– Database manipulation
– Report creation
– Scripting

•  Super computers/clouds
– Light-weight OS, better utilities resources than

Windows

Still need windows?
•  Try cygwin

Pseudo-Unix for Windows
Provides a great deal of functionality
of Unix, on your Windows machine

 Brown 45

Summary
•  When Unix first came out, it represented a

huge leap in OS design
•  Established many of the modern ideas

used today
•  Windows has slowly copied these ideas
•  There is always room for improvement

– Don’t become complacent
– Cloud computing, very light-weight systems

•  Maybe Google

 Brown 46

